Test 2 Numerical Mathematics 2
 January 12, 2023

Duration: 90 minutes.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark of this test. Use of a calculator is allowed.

1. Consider the matrix

$$
A=\left[\begin{array}{cccc}
-1 & 3 & 0 & 0 \\
-1 & -2 & -2 & 0 \\
0 & 4 & -3 & 6 \\
0 & 0 & -2 & -4
\end{array}\right]
$$

(a) $[0.7]$ Show that A is irreducible.
(b) [1.5] Write A as the sum of a symmetric and a skew-symmetric matrix. Consider the symmetric part and localize its eigenvalues by the Gershgorin theorems. And similar for the skew-symmetric part of A
(c) $[0.8]$ According to Bendixson's theorem, where are the eigenvalues of A located in the complex plane based on the results in the previous part? Is A non-singular?
2. Let A be a square matrix with a complete set of eigenvectors v_{1}, \cdots, v_{n} with $A v_{i}=\lambda_{i} v_{i}$, $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Furthermore, let $x_{1}=\sum_{i=1}^{n} v_{i}, x_{2}=\sum_{i=1}^{n} \frac{1}{i} v_{i}$. Define $X=\left[x_{1}, x_{2}\right]$.
(a) [1.5] Show that $Y^{(n)}=A^{n} X$ converges for large n to $\left[\lambda_{1}^{n} v_{1}+\lambda_{2}^{n} v_{2}, \lambda_{1}^{n} v_{1}+\frac{1}{2} \lambda_{2}^{n} v_{2}\right]$.
(b) [1.5] Show that the eigenvalues θ_{1} and θ_{2} of the 2 -dimensional (generalized) eigenvalue problem

$$
\begin{equation*}
\left(Y^{(n)}\right)^{T} A Y^{(n)} \hat{y}=\theta\left(Y^{(n)}\right)^{T} Y^{(n)} \hat{y} \tag{1}
\end{equation*}
$$

are λ_{1} and λ_{2} when the convergence as indicated in part a has set in. Hint: consider $\hat{y}=[1,-2]^{T}$ and $\hat{y}=[1,-1]^{T}$, respectively.
(c) [1.0] Though analytically the above will give us the two dominant eigenvalues of A it will fail on a computer. Explain why this is happening. How can one remedy it?
3. Let $K^{m}(A, v)$ denote the Krylov subspace.
(a) $[0.5]$ How is the Krylov subspace $K^{m}(A, v)$ defined?
(b) [1.5] Suppose $A \in \mathbb{R}^{n \times n}$ has $k<n$ different eigenvalues and A has a complete set of eigenvectors, i.e. the eigenvectors are a basis for \mathbb{R}^{n}. Show that the dimension of $K^{m}(A, v)$ is at most k.

